What Causes Static Electricity? Scientists May Have Found the Answer

Transformers One Is Now on Digital and We’ve Got an Exclusive Clip
October 24, 2024
Opinion: Remembering the marvel, Maggie Smith
October 24, 2024
Show all

What Causes Static Electricity? Scientists May Have Found the Answer

What Causes Static Electricity? Scientists May Have Found the Answer

A new study reveals why rubbing two things together can generate electricity.

Full Article

Scientists at Northwestern University may have figured out why walking on carpet in your socks, petting your furry friend, or rubbing a balloon on your hair creates static electricity. In a new study, they say they’ve found that rubbing can create tiny deformations on an object’s surface that allows the phenomenon to occur. People have known about the existence of static electricity for millennia, with the first recorded observation of it thought to have been made by Greek philosopher Thales of Mileus in 600 B.C. (Thales noticed that fur would attract dust right after it was rubbed with amber). Since then, we’ve learned that lots of things can cause static electricity and that it can be advantageous to animals, such as ticks that use static electricity to extend their host-grappling range. But scientists have remained in the dark about many of the basics behind static electricity, particularly why rubbing often induces it—at least, perhaps, until now. “For the first time, we are able to explain a mystery that nobody could before: why rubbing matters,” said lead researcher Laurence Marks, Professor Emeritus of Materials Science and Engineering at Northwestern, in a statement from the university. “People have tried, but they could not explain experimental results without making assumptions that were not justified or justifiable. We now can, and the answer is surprisingly simple.” Most people have seen the classic balloon trick, in which rubbing a balloon on your head creates static electricity that makes hair stand on end. The basic principle of the trick is that rubbing two objects with very different physical properties causes one object (our hair, in this example) to lose electrons and become positively charged and the other object to become negatively charged (gaining electrons). When the objects then meet again, the difference in charge causes them to be attracted to each other and for electrons to rapidly move from one to the other. This rapid movement of electrons also explains why rubbing our feet along our carpet and then touching a metal doorknob can cause a small shock. But rubbing pieces of the same material can also generate static charge, and previous research seems to have debunked a common explanation for why this can happen (the argument was that this charge could be created by rubbing pieces of the same materials with two different sizes). In this new study, published last month in the journal Nano Letters, Marks and his team say they’ve found another major mechanism to explain why rubbing can cause static charging. In 2019, they published a study finding that the mere act of rubbing two materials together can cause small deformations on the surfaces of the objects, which create voltage. But they’ve now worked out exactly how rubbing can lead to static charging, which is influenced by the existence of elastic shear, or a material’s ability to resist sliding when moving along a surface (this is why we eventually stop sliding on a floor even when wearing socks). They argue that the increasing friction caused by elastic shear means that the front and back of an object can have different deformation that carry opposing charges, which then allows static electricity to happen, akin to how the difference in air pressure above and below a plane’s wing causes lift. “In 2019, we had the seed of what was going on. However, like all seeds, it needed time to grow,” Marks said. “Now, it has blossomed. We developed a new model that calculates electrical current. The values for the current for a range of different cases were in good agreement with experimental results.” Other researchers will have to verify the results, and while this hypothesis may help explain many kinds of static electricity, including the kind produced by same-material rubbing, it wouldn’t explain every instance. Still, it’s oddly comforting to know that science has plenty of mundane mysteries left to solve in trying to understand the world around us—it means that there’s always something new left to learn.

Physics

Get the best tech, science, and culture news in your inbox daily.

News from the future, delivered to your present.

Please select your desired newsletters and submit your email to upgrade your inbox.

Texas A&M University professor Peter McIntyre and his colleagues want to build a particle accelerator around the rim of the Gulf of Mexico in order to discover the most fundamental building blocks of the universe.

Using a unique, circular wave pool, engineers learned that waves can be four time steeper than previously calculated.

The labyrinthine fractal is based on movements in chess and strange crystal structures found in the physical world.

The lone star state’s heat is going to feel hotter than usual, thanks to the combination of heat and humidity.

The latest dark matter experiment kicks off this week, as physicists aim to identify the universe’s most enigmatic particles.

The laser-based communications system doubled its transmission pace from last year, delivering data at a speedy rate of 200 gigabits per second.

Discover the Winners of the 2024 Gizmodo Science Fair ➜ We may earn a commission when you buy through links on our sites.

©2024 GIZMODO USA LLC. All rights reserved. Mode

Follow us

Mode

Follow us

Read more at the source

Aman Mehndiratta
Aman Mehndiratta
Aman Mehndiratta encourages the concept of corporate philanthropy due to the amazing advantages of practicing this. He is a philanthropist and an entrepreneur too. That is why exactly he knows the importance of corporate philanthropy for the betterment of society.

Comments are closed.